Add like
Add dislike
Add to saved papers

Oxycodone self-administration during pregnancy disrupts the maternal-infant dyad and decreases midbrain OPRM1 expression during early postnatal development in rats.

Opioid use and abuse has reached epidemic levels in the United States. As these drugs are frequently used by women of reproductive age, there has been a significant increase in the number of infants born to opioid dependent women. Few preclinical studies have examined voluntary opioid intake during pregnancy, and none have used intravenous self-administration. Thus, the purpose of the current set of studies was to utilize a translational model of oxycodone self-administration in rats to determine the effects of oxycodone intake during pregnancy on early postnatal outcomes. Females were trained to intravenously self-administer oxycodone several weeks prior to mating and then continuously throughout pregnancy followed by withdrawal around the time of parturition. Offspring were monitored for weight gain and separation-induced ultrasonic vocalizations (i.e. number of calls) while dams were examined for motivated maternal responding. Neural expression of the mu opioid receptor gene OPRM1 was examined in offspring on postnatal day 1 (PND1). Results indicate that females self-administer oxycodone during pregnancy at levels similar to those observed in cycling females. Postpartum, oxycodone withdrawn females demonstrate impaired maternal responding. In offspring, while no significant group effects were observed on body weight or call number, age-dependent alterations in weight gain and call number correlated with the dams cumulative oxycodone dose during pregnancy. In addition, offspring demonstrated region specific effects of oxycodone exposure on OPRM1 on PND1. Overall, these findings demonstrate that pregnant females will voluntarily self-administer oxycodone at levels similar to cycling females when using a short access model. Further, maternal oxycodone self-administration alters the maternal-offspring dyad in a manner that is dose-dependent and results in sex- and region-specific effects on OPRM1 expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app