Add like
Add dislike
Add to saved papers

Three-dimensional tissue culture model of human breast cancer for the evaluation of multidrug resistance.

Multidrug resistance (MDR) is one of the major obstacles to improving outcomes of chemotherapy in tumour patients. However, progress has been slow to overcome this phenomenon due to the limitations of current cell/tissue models in recapitulating MDR behaviour of tumour cells in vitro. To address this issue, a more pathologically relevant, three-dimensional (3D) culture of human breast cancer cells was developed by seeding the adriamycin-resistant cells MCF-7R in silk-collagen scaffolds. The cultures of the parental cell line MCF-7 served as controls. Distinct growth profiles of MCF-7R and MCF-7 cells were observed when they were cultured in the scaffolds in comparison with those in the monolayer culture, including cell proliferation, cellular aggregate formation, and expression of drug resistance-related genes/proteins. Moreover, the 3D cultures of these cell lines especially the cultures of MCF-7R exhibited a significantly enhanced drug resistance evidenced by their increased IC50 values to the anticancer drugs and improved drug efflux capability. An altered cell cycle distribution and improved percentage of breast cancer stem cell (BCSC)-like cells was also found in the present study. This might play an important role in promoting the drug-resistance production in those 3D cultures. Thus, we established improved 3D cultures of MDR human breast cancer. It would provide a robust tissue model for use to evaluate the efficacy of anticancer drugs, explore mechanisms of MDR, and enrich BCSCs in vitro.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app