Add like
Add dislike
Add to saved papers

Distinct metabolic states govern skeletal muscle stem cell fates during prenatal and postnatal myogenesis.

During growth, homeostasis and regeneration, stem cells are exposed to different energy demands. Here, we characterise the metabolic pathways that mediate the commitment and differentiation of mouse skeletal muscle stem cells, and how their modulation can influence the cell state. We show that quiescent satellite stem cells have low energetic demands and perturbed oxidative phosphorylation during ageing, which is also the case for cells from post-mortem tissues. We show also that myogenic fetal cells have distinct metabolic requirements compared to those proliferating during regeneration, with the former displaying a low respiration demand relying mostly on glycolysis. Furthermore, we show distinct requirements for peroxisomal and mitochondrial fatty acid oxidation (FAO) in myogenic cells. Compromising peroxisomal but not mitochondrial FAO promotes early differentiation of myogenic cells. Acute muscle injury and pharmacological block of peroxisomal and mitochondrial FAO expose differential requirements for these organelles during muscle regeneration. Taken together, these observations indicate that changes in myogenic cell state lead to significant alterations in metabolic requirements. In addition, perturbing specific metabolic pathways impacts on myogenic cell fates and the regeneration process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app