Add like
Add dislike
Add to saved papers

Controlling injectability and in vivo stability of thermogelling copolymers for delivery of yttrium-90 through intra-tumoral injection for potential brachytherapy.

Biomaterials 2018 October
Intra-tumoral injection of radiopharmaceuticals such as yttrium-90 (90 Y) or phosphorus-32 (32 P) is an important route for brachytherapy in unresectable solid tumors such as locally advanced hepatocellular carcinoma. However, the injected radiopharmaceuticals can potentially leak out from the tumor site due to high intra-tumoral pressure. In this study, we demonstrated the use of thermogelling copolymers that can be injected into tumor and subsequently solidify as hydrogels within the tumor that can potentially overcome the above problem. To this end, a series of thermogelling polyurethane copolymers with varying compositions were designed and synthesized from Pluronic F127, poly(3-hydroxylbutyrate), and poly(propylene glycol), which were characterized in terms of their molecular structures, compositions, phase diagrams, rheological properties, and injectability and body temperature stability in vitro and in vivo. The analyses of our data elucidated the injectability of the copolymer solutions at low temperatures, and the stability of the hydrogels at the body temperature. This provided the basis on which we could identify one copolymer with balanced composition as the most suitable candidate for intra-tumoral injection and for prevention of the leakage. Finally, the injectability and in vivo stability of the copolymer solution and hydrogel loaded with 90 Y were further demonstrated in a mouse tumor model, and the in vivo biodistribution of 90 Y showed that the radionuclide could be retained at the tumor site, indicating that the 90 Y-loaded copolymer has a great potential for tumor radio-brachytherapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app