Add like
Add dislike
Add to saved papers

Chaperonin facilitates protein folding by avoiding initial polypeptide collapse.

Journal of Biochemistry 2018 November 2
Chaperonins assist folding of many cellular proteins, including essential proteins for cell viability. However, it remains unclear how chaperonin-assisted folding is different from spontaneous folding. Chaperonin GroEL/GroES facilitates folding of denatured protein encapsulated in its central cage but the denatured protein often escapes from the cage to the outside during reaction. Here, we show evidence that the in-cage-folding and the escape occur diverging from the same intermediate complex in which polypeptide is tethered loosely to the cage and partly protrudes out of the cage. Furthermore, denatured proteins in the chaperonin cage are kept in more extended conformation than those initially formed in spontaneous folding. We propose that the formation of tethered intermediate of polypeptide is necessary to prevent polypeptide collapse at the expense of polypeptide escape. The tethering of polypeptide would allow freely mobile portions of tethered polypeptide to fold segmentally.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app