JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., INTRAMURAL
Add like
Add dislike
Add to saved papers

Olfactomedin 4 Deletion Improves Male Mouse Glucose Intolerance and Insulin Resistance Induced by a High-Fat Diet.

Endocrinology 2018 September 2
Glucose-stimulated insulin secretion (GSIS) is essential for blood glucose homeostasis and is impaired in type 2 diabetes mellitus. Understanding the regulatory components of GSIS has clinical implications for diabetes treatment. In this study, we found that olfactomedin 4 (OLFM4) is endogenously expressed in pancreatic islet β cells and further investigated its potential roles in glucose homeostasis and the pathogenesis of type 2 diabetes using mouse models. Olfm4-deficient mice showed significantly improved glucose tolerance and significantly increased insulin levels after glucose challenge compared with wild-type (WT) mice. GSIS, mitochondrial ATP production, and mitochondrial respiration were all significantly increased in islets isolated from Olfm4-deficient mice compared with those isolated from WT mice. In a high-fat diet (HFD)-induced diabetic mouse model, the increase in insulin levels after glucose challenge was significantly higher in Olfm4-deficient mice compared with WT mice. The impaired glucose tolerance and insulin resistance in HFD-fed mice were improved by loss of Olfm4. Olfm4 was found to be mainly localized in the mitochondria and interacts with GRIM-19 (a gene associated with retinoid-interferon mortality) in Min6 pancreatic β cells. Collectively, these studies suggest that Olfm4 negatively regulates GSIS. OLFM4 may represent a potential therapeutic target for impaired glucose tolerance and patients with type 2 diabetes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app