Add like
Add dislike
Add to saved papers

A comparative study of wavelength-dependent photoinactivation in photosystem II of drought-tolerant photosynthetic organisms in Antarctica and the potential risks of photoinhibition in the habitat.

Annals of Botany 2018 July 24
Background and Aims: All photosynthetic organisms are faced with photoinhibition, which would lead to death in severe environments. Because light quality and light intensity fluctuate dynamically in natural microenvironments, quantitative and qualitative analysis of photoinhibition is important to clarify how this environmental pressure has impacted ecological behaviour in different organisms.

Methods: We evaluated the wavelength dependency of photoinactivation to photosystem II (PSII) of Prasiola crispa (green alga), Umbilicaria decussata (lichen) and Ceratodon purpureus (bryophyte) harvested from East Antarctica. For evaluation, we calculated reaction coefficients, Epis, of PSII photoinactivation against energy dose using a large spectrograph. Daily fluctuation of the rate coefficient of photoinactivation, kpi, was estimated from Epis and ambient light spectra measured during the summer season.

Key Results: Wavelength dependency of PSII photoinactivation was different for the three species, although they form colonies in close proximity to each other in Antarctica. The lichen exhibited substantial resistance to photoinactivation at all wavelengths, while the bryophyte showed sensitivity only to UV-B light (<325 nm). On the other hand, the green alga, P. crispa, showed ten times higher Epi to UV-B light than the bryophyte. It was much more sensitive to UV-A (325-400 nm). The risk of photoinhibition fluctuated considerably throughout the day. On the other hand, Epis were reduced dramatically for dehydrated compared with hydrated P. crispa.

Conclusions: The deduced rate coefficients of photoinactivation under ambient sunlight suggested that P. crispa needs to pay a greater cost to recover from photodamage than the lichen or the bryophyte in order to keep sufficient photosynthetic activity under the Antarctic habitat. A newly identified drought-induced protection mechanism appears to operate in P. crispa, and it plays a critical role in preventing the oxygen-evolving complex from photoinactivation when the repair cycle is inhibited by dehydration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app