Add like
Add dislike
Add to saved papers

A One-Step Method of Hydrogel Modification by Single-Walled Carbon Nanotubes for Highly Stretchable and Transparent Electronics.

Electrically conductive hydrogels (ECHs) are attracting much interest in the field of biomaterials science because of their unique properties. However, effective incorporation and dispersion of conductive materials in the matrices of polymeric hydrogels for improved conductivity remains a great challenge. Here, we demonstrate highly transparent, electrically conductive, stretchable tough hydrogels modified by single-walled carbon nanotubes (SWCNTs). Two different approaches for the fabrication of SWCNT/hydrogel structures are examined: a simple SWCNT film transfer onto the as-prepared hydrogel and the film deposition onto the pre-stretched hydrogel. Functionality of our method is confirmed by scanning electron microscopy along with optical and electrical measurements of our structures while subjecting them to different strains. Since the hydrogel-based structures are intrinsically soft, stretchable, wet, and sticky, they conform well to a human skin. We demonstrate applications of our material as skin-like passive electrodes and active finger-mounted joint motion sensors. Our technique shows promise to accelerate the development of biointegrated wearable electronics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app