Add like
Add dislike
Add to saved papers

Capsule and fimbriae modulate the invasion of Haemophilus influenzae in a human blood-cerebrospinal fluid barrier model.

The Gram-negative bacterium Haemophilus influenzae (H. influenzae) can commensally colonize the upper respiratory tract, but also cause life threatening disease including epiglottitis, sepsis and meningitis. The H. influenzae capsule protects the bacteria against both phagocytosis and opsonization. Encapsulated H. influenzae strains are classified into serotypes ranging from a to f dependent on their distinct polysaccharide capsule. Due to the implementation of vaccination the incidence of invasive H. influenzae type b (Hib) infections has strongly decreased and infections with other capsulated types, including H. influenzae type f (Hif), are emerging. The pathogenesis of H. influenzae meningitis is not clarified. To enter the central nervous system (CNS) the bacteria generally have to cross either the blood-brain barrier (BBB) or the blood-cerebrospinal fluid barrier (BSCFB). Using a cell culture model of the BCSFB based on human choroid plexus papilloma (HIBCPP) cells and different H. influenzae strains we investigated whether Hib and Hif invade the cells, and if invasion differs between encapsulated vs. capsular-deficient and fimbriated vs. non-fimbriated variants. We find that Hib can adhere to and invade into HIBCPP cells. Invasion occurs in a strongly polar fashion, since the bacteria enter the cells preferentially from the basolateral "blood "side. Fimbriae and capsule attenuate invasion into choroid plexus (CP) epithelial cells, and capsulation can influence the bacterial distribution pattern. Finally, analysis of clinical Hib and Hif isolates confirms the detected invasive properties of H. influenzae. Our data point to roles of capsule and fimbriae during invasion of CP epithelial cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app