Add like
Add dislike
Add to saved papers

Catabolism of mucus components influences motility of Vibrio cholerae in the presence of environmental reservoirs.

Vibrio cholerae O1, the etiological agent of cholera, is a natural inhabitant of aquatic ecosystems. Motility is a critical element for the colonization of both the human host and its environmental reservoirs. In this study, we investigated the molecular mechanisms underlying the chemotactic response of V. cholerae in the presence of some of its environmental reservoirs. We found that, from the several oligosaccharides found in mucin, two specifically triggered motility of V. cholerae O1: N-acetylneuraminic acid (Neu5Ac) and N-acetylglucosamine (GlcNAc). We determined that the compounds need to be internally catabolized in order to trigger motility of V. cholerae. Interestingly, the catabolism of Neu5Ac and GlcNAc converges and the production of one molecule common to both pathways, glucosamine-6-phosphate (GlcN-6P), is essential to induce motility in the presence of both compounds. Mutants unable to produce GlcN-6P show greatly reduced motility towards mucin. Furthermore, we determined that the production of GlcN-6P is necessary to induce motility of V. cholerae in the presence of some of its environmental reservoirs such as crustaceans or cyanobacteria, revealing a molecular link between the two distinct modes of the complex life cycle of V. cholerae. Finally, cross-species comparisons revealed varied chemotactic responses towards mucin, GlcNAc, and Neu5Ac for environmental (non-pathogenic) strains of V. cholerae, clinical and environmental isolates of the human pathogens Vibrio vulnificus and Vibrio parahaemolyticus, and fish and squid isolates of the symbiotic bacterium Vibrio fischeri. The data presented here suggest nuance in convergent strategies across species of the same bacterial family for motility towards suitable substrates for colonization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app