Add like
Add dislike
Add to saved papers

Exponential Stabilization of Fuzzy Memristive Neural Networks With Hybrid Unbounded Time-Varying Delays.

This paper is concerned with exponential stabilization for a class of Takagi-Sugeno fuzzy memristive neural networks (FMNNs) with unbounded discrete and distributed time-varying delays. Under the framework of Filippov solutions, algebraic criteria are established to guarantee exponential stabilization of the addressed FMNNs with hybrid unbounded time delays via designing a fuzzy state feedback controller by exploiting inequality techniques, calculus theorems, and theories of fuzzy sets. The obtained results in this paper enhance and generalize some existing ones. Meanwhile, a general theoretical framework is proposed to investigate the dynamical behaviors of various neural networks with mixed infinite time delays. Finally, two simulation examples are performed to illustrate the validity of the derived outcomes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app