Add like
Add dislike
Add to saved papers

Optimization of digital volume correlation computation in SR-microCT images of trabecular bone and bone-biomaterial systems.

A micromechanical characterization of biomaterials for bone tissue engineering is essential to understand the quality of the newly regenerated bone, enabling the improvement of tissue regeneration strategies. A combination of microcomputed tomography in conjunction with in situ mechanical testing and digital volume correlation (DVC) has become a powerful technique to investigate the internal deformation of bone structure at a range of dimensional scales. However, in order to obtain accurate three-dimensional strain measurement at tissue level, high-resolution images must be acquired, and displacement/strain measurement uncertainties evaluated. The aim of this study was to optimize imaging parameters, image postprocessing and DVC settings to enhance computation based on 'zero-strain' repeated high-resolution synchrotron microCT scans of trabecular bone and bone-biomaterial systems. Low exposures to SR X-ray radiation were required to minimize irradiation-induced tissue damage, resulting in the need of advanced three-dimensional filters on the reconstructed images to reduce DVC-measured strain errors. Furthermore, the computation of strain values only in the hard phase (i.e. bone, biomaterial) allowed the exclusion of large artefacts localized in the bone marrow. This study demonstrated the suitability of a local DVC approach based on synchrotron microCT images to investigate the micromechanics of trabecular bone and bone-biomaterial composites at tissue level with a standard deviation of the errors in the region of 100 microstrain after a thorough optimization of DVC computation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app