Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A highly integrated precision nanomedicine strategy to target esophageal squamous cell cancer molecularly and physically.

The prognosis of esophageal squamous cell carcinoma is poor. We hereby presented a highly integrated and clinically relevant precision nanomedicine strategy to target ESCC molecularly and physically for significant improvement of the treatment efficacy. We firstly identified PI3K overexpression in patient samples and its relation to poor patient survival. With our highly versatile tumor-targeted drug delivery platform (DCM), we were able to load a potent but toxic docetaxel (DTX) and a PI3K inhibitor (AZD8186) with favorable physical properties. The combination of the DTX-DCM and AZD8186-DCM showed a highly efficacious and synergistic anti-tumor effect and decreased hematotoxicity. A pro-apoptotic protein, Bax was significantly upregulated in ESCC cells treated with combination therapy compared to that with monotherapy. This study utilized a highly integrated precision nano-medicine strategy that combines the identification of cancer molecular target from human patients, precision drug delivery and effective combination therapy for the development of better ESCC treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app