Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Correlation between Electrical Transport and Nanoscale Strain in InAs/In 0.6 Ga 0.4 As Core-Shell Nanowires.

Nano Letters 2018 August 9
Free-standing semiconductor nanowires constitute an ideal material system for the direct manipulation of electrical and optical properties by strain engineering. In this study, we present a direct quantitative correlation between electrical conductivity and nanoscale lattice strain of individual InAs nanowires passivated with a thin epitaxial In0.6 Ga0.4 As shell. With an in situ electron microscopy electromechanical testing technique, we show that the piezoresistive response of the nanowires is greatly enhanced compared to bulk InAs, and that uniaxial elastic strain leads to increased conductivity, which can be explained by a strain-induced reduction in the band gap. In addition, we observe inhomogeneity in strain distribution, which could have a reverse effect on the conductivity by increasing the scattering of charge carriers. These results provide a direct correlation of nanoscale mechanical strain and electrical transport properties in free-standing nanostructures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app