Add like
Add dislike
Add to saved papers

Noncovalent, Electrostatic Interactions Induce Positively Cooperative Binding of Small Molecules to Alzheimer's and Parkinson's Disease-Related Amyloids.

Amyloids are self-assembled protein aggregates that represent a major hallmark of many neurologic and systemic diseases. Among the common features of amyloids is the presence of a high density of multiple binding sites for small molecule ligands, making them an attractive target for design of multimeric binding agents. Here, we demonstrate that noncovalent, intermolecular interactions between a 1:1 mixture of oppositely charged benzothiazole molecules enhances their binding to two different amyloid aggregates: Alzheimer's-related amyloid-β (Aβ) peptides or Parkinson's-related α-synuclein (αS) proteins. We show that this mixture leads to positively cooperative binding to amyloid targets, with up to 10-fold enhancement of binding compared to the uncharged parent compound. The observed enhancement of amyloid binding using noncovalent interactions was similar in magnitude to a benzothiazole dimer to aggregated Aβ. These results represent a novel strategy for designing amyloid-targeting molecules with enhanced affinity, which could aid in the development of new diagnostic or treatment strategies for amyloid-associated diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app