Add like
Add dislike
Add to saved papers

Vacuum-Ultraviolet Photodetection in Few-Layered h-BN.

Over the past 20 years, astro and solar physicists have been working hard to develop a new-generation semiconductor-based vacuum-ultraviolet (VUV, 100-200 nm) photodetector with small size and low power consumption, to replace the traditional microchannel detection system, which is ponderous and has high energy consumption, and finally to reduce the power load and launch costs of explorer satellites. However, this expectation has hardly been achieved due to the relatively low photoresponsivity and external quantum efficiency (EQE) of the reported VUV photoconductive detectors based on traditional wide-band-gap materials and structures. Here, on the basis of few-layer h-BN, we fabricated a high-performance two-dimensional photodetector with selective response to VUV light. Typically, it has high sensitivity (EQE = 2133%, at 20 V) to the extremely weak 160 nm light (3.25 pW). This excellent photoresponsivity can be attributed to the high carrier collection efficiency and existing surface trap states of few-layer h-BN. In addition, this device can maintain a stable performance in a wide temperature range (80-580 K), which is quite favorable for application in deep space with huge temperature fluctuation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app