Add like
Add dislike
Add to saved papers

Self-Assembled Honokiol-Loaded Microbubbles in the Treatment of Ovarian Cancer by Ultrasound Irradiation.

To observe the growth inhibition of subcutaneous ovarian cancer xenografts in nude mice and mechanisms by ultrasound irradiation with honokiol-loaded poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCL-PEG-PCL, PCEC) microbubbles (HK-PCEC-MB) as a promising therapeutic approach to ovarian tumor. HK-PCEC-MB were prepared using the double-emulsion solvent evaporation technique. Particles were characterized with regard to shape, size, distribution and surface potential using dynamic light scattering and the Malvern Zetasizer ZS90 system. Entrapment efficiency and loading amounts of honokiol were determined via high-performance liquid chromatography (HPLC). Pharmacological activity and optimal mode of action were examined using MTT assay. Nude mice were sorted into five groups of cisplatin-sensitive (A2780s) and cisplatin-resistant (A2780cp) ovarian cancer cell subcutaneous xenograft models: (1) HK-PCEC-MB+ultrasound; (2) HK; (3) PCEC-MB+ultrasound; (4) HK-PCEC-MB; (5) controls. We observed rates of growth inhibition, necrosis, and apoptosis, as well as microvessel density (MVD) changes. Physical properties of HK-PCEC-MB followed the normal pattern. The drug entrapment efficiency of HK-PCEC-MB was 65.08±2.31% and drug loading amount was 6.51±0.23%. Cancer cell survival rate was lowest in vitro at a drug concentration of 10 μg/mL with exposure to 2.58 W ultrasonic wave. In ultrasound irradiation combined with HK-PCEC-MB group, rates of necrosis and apoptosis were the highest, while the number of microvessel was the least. We have successfully prepared self-assembled HK-PCEC-MB that inhibits resistant human ovarian tumor growth by ultrasound irradiation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app