Add like
Add dislike
Add to saved papers

Geometry and energy constrained projection extension.

BACKGROUND: In clinical computed tomography (CT) applications, when a patient is obese or improperly positioned, the final tomographic scan is often partially truncated. Images directly reconstructed by the conventional reconstruction algorithms suffer from severe cupping and direct current bias artifacts. Moreover, the current methods for projection extension have limitations that preclude incorporation from clinical workflows, such as prohibitive computational time for iterative reconstruction, extra radiation dose, hardware modification, etc.METHOD:In this study, we first established a geometrical constraint and estimated the patient habitus using a modified scout configuration. Then, we established an energy constraint using the integral invariance of fan-beam projections. Two constraints were extracted from the existing CT scan process with minimal modification to the clinical workflows. Finally, we developed a novel dual-constraint based optimization model that can be rapidly solved for projection extrapolation and accurate local reconstruction.

RESULTS: Both numerical phantom and realistic patient image simulations were performed, and the results confirmed the effectiveness of our proposed approach.

CONCLUSION: We establish a dual-constraint-based optimization model and correspondingly develop an accurate extrapolation method for partially truncated projections. The proposed method can be readily integrated into the clinical workflow and efficiently solved by using a one-dimensional optimization algorithm. Moreover, it is robust for noisy cases with various truncations and can be further accelerated by GPU based parallel computing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app