Add like
Add dislike
Add to saved papers

Non-linear dynamics of heart rate variability during incremental cycling exercise.

Within the last years complex models of cardiovascular regulation and exercise fatigue have implemented heart rate variability (HRV) as a measure of autonomic nervous system. Using detrended fluctuation analysis (DFA) to assess heart rate correlation properties, the present study examines the influence of exercise intensity on total variability and complexity in non-linear dynamics of HRV. Sixteen cyclists performed a graded exercise test on a bicycle ergometer. HRV time domain measures and fractal correlation properties were analyzed using short-term scaling exponent alpha1 of DFA. Amplitude and complexity of HRV parameters decreased significantly. DFA-alpha1 increased from rest to low exercise intensity and showed an almost linear decrease from higher intensities until exhaustion. These findings support a qualitative change in self-organized heart rate regulation from a complex autonomic control at rest and low intensities towards a breakdown of the interaction in control mechanisms with non-autonomic heart rate control dominating at high intensities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app