Add like
Add dislike
Add to saved papers

Substructure Reactivity Affecting the Manganese Dioxide Oxidation of Cephalosporins.

Cefotaxime (CTX), cephalexin (CFX), cephradine (CFD), cephapirin (CFP), and cefazolin (CFZ) were selected as target cephalosporin antibiotics to study their oxidative transformation by δ-MnO2 . Although they all have the same core structure (7-aminodesacetoxycephalosporanic acid), very different MnO2 oxidation rates were observed at pH 4 (the initial reaction rate constant kinit ranged from 0.014 to 2.6 h-1 ). An extensive investigation of the substructure compounds and byproduct analysis revealed that the oxidation mainly occurred at the following two sites on the core structure: (1) the sulfur atom in the cephem ring and (2) the carbon-carbon double bond (C═C) and its proximal carboxylic acid group. In the case of (2), when there is an acetyloxymethyl group at the C-3 position of the core structure, the formation of the keto-sulfone byproducts was inhibited. The overall results indicated that a substituent at the C-3 position could stabilize the core structure, which would result in a decrease in the oxidation rate; however, a substituent at the amine position of the core structure might affect the overall degradation rate of the cephalosporin, depending on its reactivity with MnO2 . Thus, the apparent reaction rates varied widely in the trend of CTX > CFP > CFD > core structure ≈ CFX > CFZ. The mechanistic elucidation can also help explain the degradation rates of cephalosporin antibiotics in other oxidation processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app