Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Simultaneous nitrification-denitrification and microbial community profile in an oxygen-limiting intermittent aeration SBBR with biodegradable carriers.

Biodegradation 2018 October
To enhance the startup and efficient simultaneous nitrification and denitrification for sewage treatment, sequencing batch biofilm reactors (SBBRs) partially coupled with rice husk were established and operated under various intermittent micro-aeration cycles (IMCs) and COD/N ratios under oxygen-limiting intermittent aeration conditions. Experimental results showed that the increase of IMCs with non-aeration/micro-aeration mode of (8 h/4 h)1 to (2 h/1 h)4 in a 12 h-cycle accelerated the startup performance and improved NH4 + -N and COD removal. NH4 + -N, TN and COD removal efficiencies were 98.7 ± 0.9, 89.2 ± 5.2 and 82.9 ± 6.7% at COD/N ratio of 7.6 with the highest IMCs in SBBR, respectively. Higher TN removal efficiencies of 87.2 ± 4.0 and 58.1 ± 3.5% were also achieved at lower COD/N ratio of 5.6 and 2.8, respectively. In SBBRs with various IMCs, facultative denitrifier like genus Acinetobacter and solid-phase denitrifier belonging to Comamonadaceae family were enriched. However, aerobic denitrifiers with function of heterotrophic nitrification like Paracoccus were favored to enrich under higher IMCs condition, and more anoxic denitrifiers like sulfur-based autotrophic denitrifier Thiothrix and heterotrophic denitrifiers like Pseudomonas and Methyloversatilis were observed at lower IMCs condition. Autotrophic nitrifier (Nitrosomonas and Nitrosipra) and heterotrophic nitrifiers both contributed to the efficient nitrification.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app