Add like
Add dislike
Add to saved papers

Bioremediation potential of bacteria able to reduce high levels of selenium and tellurium oxyanions.

Environmental contamination by Te and Se oxyanions has become a serious concern, with the search for green, ecologically friendly methods for removal gaining ground. Bacteria capable of reducing these highly toxic compounds to a virtually non-toxic elemental form could provide a solution. In this study, four strains of bacteria with potential for bioremediation of Te and Se oxyanions were investigated. Under aerobic conditions over 48 h, Erythromicrobium ramosum, strain E5 removed 244 µg/ml tellurite and 98 µg/ml selenite, Erythromonas ursincola, KR99 203 µg/ml tellurite and 100 µg/ml selenite, AV-Te-18 98 µg/ml tellurite and 103 µg/ml selenite and ER-V-8 93 µg/ml tellurite and 103 µg/ml selenite. In the absence of oxygen, AV-Te-18 and ER-V-8 removed 10 µg/ml tellurite after 24 and 48 h, respectively and 46 and 25 µg/ml selenite, respectively, over 48 h. ER-V-8 removed 14 µg/ml selenate after 5 days. This highlights the great potential of these microbes for use in bioremediation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app