Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

The effect of adipose-derived stem cell sheets and CTGF on early flexor tendon healing in a canine model.

Scientific Reports 2018 July 24
Intrasynovial tendon injuries are among the most challenging in orthopedics. Despite significant improvements in operative and rehabilitation methods, functional outcomes continue to be limited by adhesions, gap formation, and rupture. Adhesions result from excessive inflammation, whereas tendon gapping and rupture result from inflammation-induced matrix degradation and insufficient regeneration. Therefore, this study used a combined treatment approach to modulate inflammation with adipose-derived mesenchymal stromal cells (ASCs) while stimulating tendon regeneration with connective tissue growth factor (CTGF). ASCs were applied to the repair surface via cell sheets and CTGF was delivered to the repair center via porous sutures. The effect of the combined treatment was assessed fourteen days after repair in a canine flexor tendon injury model. CTGF, either alone or with ASCs, reduced inflammatory (IL1B and IL6) and matrix degrading (MMP3 and MMP13) gene expression, while increasing anti-inflammatory gene (IL4) expression and collagen synthesis compared to control repairs. The combined treatment was more effective than CTGF treatment alone, reducing the inflammatory IFNG and scar-associated COL3A1 gene expression and increasing CD146+ tendon stem/progenitor cells at the tendon surface and interior along the core suture tracks. Therefore, the combined approach is promising in promoting early flexor tendon healing and worthy of further investigation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app