Add like
Add dislike
Add to saved papers

Transcriptional regulation of O -GlcNAc homeostasis is disrupted in pancreatic cancer.

Many intracellular proteins are reversibly modified by O -linked GlcNAc ( O -GlcNAc), a post-translational modification that dynamically regulates fundamental cellular processes in response to diverse environmental cues. Accumulating evidence indicates that both excess and deficiency of protein O -GlcNAcylation can have deleterious effects on the cell, suggesting that maintenance of O -GlcNAc homeostasis is essential for proper cellular function. However, the mechanisms through which O -GlcNAc homeostasis is maintained in the physiologic state and altered in the disease state have not yet been investigated. Here, we demonstrate the existence of a homeostatic mechanism involving mutual regulation of the O -GlcNAc-cycling enzymes O -GlcNAc transferase (OGT) and O -GlcNAcase (OGA) at the transcriptional level. Specifically, we found that OGA promotes Ogt transcription through cooperation with the histone acetyltransferase p300 and transcription factor CCAAT/enhancer-binding protein β (C/EBPβ). To examine the role of mutual regulation of OGT and OGA in the disease state, we analyzed gene expression data from human cancer data sets, which revealed that OGT and OGA expression levels are highly correlated in numerous human cancers, particularly in pancreatic adenocarcinoma. Using a KrasG12D -driven primary mouse pancreatic ductal adenocarcinoma (PDAC) cell line, we found that inhibition of extracellular signal-regulated kinase (ERK) signaling decreases OGA glycosidase activity and reduces OGT mRNA and protein levels, suggesting that ERK signaling may alter O -GlcNAc homeostasis in PDAC by modulating OGA-mediated Ogt transcription. Our study elucidates a transcriptional mechanism that regulates cellular O -GlcNAc homeostasis, which may lay a foundation for exploring O -GlcNAc signaling as a therapeutic target for human disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app