Add like
Add dislike
Add to saved papers

GSK-3β promotes cell migration and inhibits autophagy by mediating the AMPK pathway in breast cancer.

Oncology Research 2018 July 24
GSK-3β is a versatile protein kinase participating in many reactions. Currently, there is insufficient understanding of its influence on breast cancer (BC). In order to explore its influence on migration and invasion in BC, we investigated its expression in BC cell lines using qRT-PCR and western blot (WB). Immunohistochemistry (IHC) was used to examine the potential of GSK-3β to predict clinical outcome in BC patients. GSK-3β knockdown was achieved using a shRNA plasmid vector in T47D cells. Our research explored the biological reactions and downstream pathways involved. We found excessive GSK-3β expression in BC tissues, which was correlated with worse clinicopathological parameters and clinical outcome. Progression of BC was suppressed by GSK-3β knockdown. Furthermore, suppression of GSK-3β function led to a noticeable decrease in ATP generation, and this was associated with stimulation of AMP-activated protein kinase (AMPK) in T47D cells. Activation of AMPK, a typical sign of autophagy stimulation, was triggered after suppression of GSK-3β function, in parallel with increased generation of LC-3II. Our findings therefore indicate that GSK-3β participates in regulation of migration as well as stimulation of autophagy via mediating activation of the AMPK pathway. This suggests that GSK-3β has potential as a predictor of clinical outcome, and as a target for BC therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app