Add like
Add dislike
Add to saved papers

Human-associated microbial populations as evidence in forensic casework.

In forensic investigations involving human biological traces, cell type identification is often required. Identifying the cell type from which a human STR profile has originated can assist in verifying scenarios. Several techniques have been developed for this purpose, most of which focus on molecular characteristics of human cells. Here we present a microarray method focusing on the microbial populations that are associated with human cell material. A microarray with 863 probes targeting (sets of) species, specific genera, groups of genera or families was designed for this study and evaluated with samples from different body sites: hand, foot, groin, penis, vagina, mouth and faeces. In total 175 samples from healthy individuals were analysed. Next to human faeces, 15 feline and 15 canine faeces samples were also included. Both clustering and classification analysis were used for data analysis. Faecal and oral samples could clearly be distinguished from vaginal and skin samples, and also canine and feline faeces could be differentiated from human faeces. Some penis samples showed high similarity to vaginal samples, others to skin samples. Discriminating between skin samples from different skin sites proved to be challenging. As a proof of principle, twenty-one mock case samples were analysed with the microarray method. All mock case samples were clustered or classified within the correct main cluster/group. Only two of the mock case samples were assigned to the wrong sub-cluster/class; with classification one additional sample was classified within the wrong sub-class. Overall, the microarray method is a valuable addition to already existing cell typing techniques. Combining the results of microbial population analysis with for instance mRNA typing can increase the evidential value of a trace, since both techniques focus on independent targets within a sample.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app