Add like
Add dislike
Add to saved papers

Novel method of preparation of tricarboxylic cellulose nanofiber for efficient removal of heavy metal ions from aqueous solution.

2,3,6‑Tricarboxy cellulose nanofiber (TPC-CNFs) was prepared by 2,2,6,6-tetramethylpiperidine‑1‑oxyl (TEMPO) oxidation of dissolving cellulose pulp (selective at C-6) followed by periodate-chlorite oxidation (selective on C-2 and C-3). Characterization of the prepared samples were carried out using, atomic force microscope (AFM), carboxylate content determination, FTIR spectroscopy, X-ray diffraction and light transmittance spectra. Also, the mechanical properties of TEMPO-oxidized of cellulose nanofiber (T-CNFs) and TPC-CNFs with and without polyamide-amine-epichlorohydrin crosslinker (PAE) films were determined which the tensile strength were 8.19, 12.43 and 20.5 MPa and elastic moduli of 1814, 1097 and 1150 MPa respectively. Tricaboxy cellulose nanofiber was developed as a novel adsorbent of heavy metal ions. Removal of heavy metals such as Cu2+ , Ca2+ and Pb2+ from aqueous solution was carried out and the adsorption efficiencies were analyzed. On the other hand, the effect of the addition of the crosslinking agent to CNFs and the carboxylate contents of CNFs were investigated.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app