Add like
Add dislike
Add to saved papers

Power Generation for Wearable Electronics: Designing Electrochemical Storage on Fabrics.

We report a new class of textiles with electrochemical functions which, when moistened by a conductive liquid (saline solution, sweat, wound fluid, etc.), generate DC voltage and current levels capable of powering wearable electronics on the go. Contrary to previously reported power generation techniques, the proposed fabrics are fully flexible, feel and behave like regular clothing, do not include any rigid components, and provide DC power via moistening by readily available liquids. Our approach entails printed battery cells that are composed of silver and zinc electrodes deposited onto a polyester fabric to generate power in the microwatt range. Electrochemical characterization of the discharge of a single printed battery cell in a 10 M NaOH electrolyte shows reproducible results with a sustained power level of ∼80 μ W for over 3 hours. Scalable DC power may also be achieved by connecting multiple battery cells in series via flexible and conductive E-threads. Indeed, a series connection of two battery cells is demonstrated to boost the generated voltage from 1.4 V to 2.5 V. Notably, this in-series printed battery arrangement is shown to successfully power a digital thermometer under both 10 M NaOH, a 0.5 M NaCl solution (mimicking human sweat), and Dulbecco's Phosphate-Buffered Saline solution (DPBS) (mimicking bodily fluid electrolytes). Overall, the proposed technology is expected to be of utmost significance for healthcare, sports, military, and consumer applications, among others.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app