Add like
Add dislike
Add to saved papers

Concomitant attenuation of HMG-CoA reductase expression potentiates the cancer cell growth-inhibitory effect of statins and expands their efficacy in tumor cells with epithelial characteristics.

Oncotarget 2018 June 30
HMG-CoA reductase (HMGCR) inhibitors, statins, are potent cholesterol reducing drugs that exhibit anti-tumor effects in vitro and in animal models, including attenuation of metastasis formation, and their use correlates with reduced cancer-specific mortality in retrospective human cohort studies. However, E-cadherin expressing epithelial- and mixed epithelial-mesenchymal cancer cell lines (reflective of primary and outgrowing metastatic tumor cells, respectively) require higher statin concentrations than mesenchymal-like tumor cells (reflective of in-circulation metastatic tumor cells) to achieve the same degree of growth inhibition. Here, we show that attenuation of HMGCR expression in the presence of atorvastatin leads to stronger growth inhibition than dual target blockade of the mevalonate pathway in relatively statin resistant cell lines, mainly through inhibition of protein prenylation pathways. Thus, combined inhibition of the mevalonate pathway's rate-limiting enzyme, HMGCR, can improve atorvastatin's growth inhibitory effect on epithelial- and mixed mesenchymal-epithelial cancer cells, a finding that may have implications for the design of future anti-metastatic cancer therapies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app