Add like
Add dislike
Add to saved papers

Micropipette-powered droplet based microfluidics.

Droplet-based microfluidics, using water-in-oil emulsion droplets as micro-reactors, is becoming a widespread method for performing assays and especially in the cell biology field. Making a simple and highly portable system for creating emulsion droplets would help to continue the popularization of such a technique. Also, the ability to emulsify all the samples would strengthen this compartimenlization technique to handle samples with limited volume. Here, we propose a strategy of droplet formation that combines a classical flow-focusing microfluidic chip, which could be commercially available, with a standard laboratory adjustable micropipette. The micropipette is used as a negative pressure generator for controlling liquid flows. In that way, emulsification does neither require any electrical power supply nor a cumbersome device and functions with small liquid volumes. Droplet formation can be easily and safely performed in places with limited space, opening a wide range of applications especially in biological laboratory environments with higher level of safety regulations, i.e., BSL-3/4. Fortunately, the present methodology that involves small fluid volumes, and thus possible time dependent flow conditions, allows to minimize dead volume while keeping drops' size homogeneous. A physical characterization of droplet production and a model that describes the emulsion features, in terms of drop size and size distribution, are proposed for rationalizing the performances of the micropipette-powered emulsification process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app