Add like
Add dislike
Add to saved papers

Feasibility evaluation of low-crystallinity β-tricalcium phosphate blocks as a bone substitute fabricated by a dissolution-precipitation reaction from α-tricalcium phosphate blocks.

Although sintered β-tricalcium phosphate blocks have been used clinically as artificial bone substitutes, the crystallinity of β-tricalcium phosphate, which might dominate biocompatibility, is extremely high. The objective of this study is to evaluate the feasibility of fabricating low-crystallinity β-tricalcium phosphate blocks, which are expected to exhibit good biocompatibility via a dissolution-precipitation reaction of α-tricalcium phosphate blocks as a precursor under hydrothermal conditions at 200°C for 24 h. Although β-tricalcium phosphate is a metastable phase, the presence of Mg2+ in the reaction solution inhibits the formation of its corresponding stable phase and induces β-tricalcium phosphate formation under acidic conditions. It was found that low-crystallinity β-tricalcium phosphate blocks could be fabricated from α-tricalcium phosphate blocks immersed in 1.0 mol/L MgCl2  + 0.1 mol/L NaH2 PO4 solution while maintaining the shape of the α-tricalcium phosphate blocks. The crystallite size of the fabricated β-tricalcium phosphate blocks was 42 nm, which was substantially smaller than that of the sintered β-tricalcium phosphate blocks. When the fabricated β-tricalcium phosphate blocks were implanted into bone defects in rabbit femurs, they exhibited excellent tissue responses. In particular, the initial osteoconductivity (two and four weeks) was substantially greater than that of sintered β-tricalcium phosphate blocks.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app