Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

CtBP represses Dpp-dependent Mad activation during Drosophila eye development.

Developmental Biology 2018 October 2
Complex networks of signaling pathways maintain the correct balance between positive and negative growth signals, ensuring that tissues achieve proper sizes and differentiation pattern during development. In Drosophila, Dpp, a member of the TGFβ family, plays two main roles during larval eye development. In the early eye primordium, Dpp promotes growth and cell survival, but later on, it switches its function to induce a developmentally-regulated cell cycle arrest in the G1 phase and neuronal photoreceptor differentiation. To advance in the identification and characterization of regulators and targets of Dpp signaling required for retinal development, we carried out an in vivo eye-targeted double-RNAi screen to identify punt (Type II TGFβ receptor) interactors. Using a set of 251 genes associated with eye development, we identified CtBP, Dad, Ago and Brk as punt genetic interactors. Here, we show that downregulation of Ago, or conditions causing increased tissue growth including overexpression of Myc or CyclinD-Cdk4 are sufficient to partially rescue punt-dependent growth and photoreceptor differentiation. Interestingly, we show a novel role for the transcriptional co-repressor CtBP in inhibiting Dpp-dependent Mad activation by phosphorylation, downstream or in parallel to Dad, the inhibitory Smad. Furthermore, CtBP downregulation activates JNK signaling pathway, implying a complex regulation of signaling pathways by CtBP during eye development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app