Add like
Add dislike
Add to saved papers

Proteomic profiling of human decidual immune proteins during Toxoplasma gondii infection.

Journal of Proteomics 2018 August 31
A Toxoplasma gondii infection during pregnancy can result in spontaneous abortion, preterm labor, or congenital fetal defects. The decidual immune system plays a critical role in regulating the immune micro-environment and in the induction of immune tolerance. To better understand the factors that mediate the decidual immune response associated with the T. gondii infection, a large-scale study employing TMT proteomics was conducted to characterize the differential decidual immune proteomes from infected and uninfected human decidual immune cells samples. The decidual immune cells from 105 human voluntary abortion tissues were purified, and of the 5510 unique proteins identified, 181 proteins were found to be differentially abundant (>1.2-fold cutoff, p < 0.05) in the T. gondii-infected decidual immune cells. 11 proteins of 181 differentially expressed proteins associated with trophoblast invasion, placental development, intrauterine fetal growth, and immune tolerance were verified using a quantitative real-time polymerase chain reaction and western blotting. This systematic analysis for the proteomics of decidual immune cells identified a broad range of immune factors in human decidual immune cells, shedding a new insight into the decidual immune molecular mechanism for abnormal pregnancy outcomes associated with T. gondii infection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app