Add like
Add dislike
Add to saved papers

Lessons in Membrane Engineering for Octanoic Acid Production from Environmental Escherichia coli Isolates.

Fermentative production of many attractive biorenewable fuels and chemicals is limited by product toxicity in the form of damage to the microbial cell membrane. Metabolic engineering of the production organism can help mitigate this problem, but there is a need for identification and prioritization of the most effective engineering targets. Here, we use a set of previously characterized environmental Escherichia coli isolates with high tolerance and production of octanoic acid, a model membrane-damaging biorenewable product, as a case study for identifying and prioritizing membrane engineering strategies. This characterization identified differences in the membrane lipid composition, fluidity, integrity, and cell surface hydrophobicity from those of the lab strain MG1655. Consistent with previous publications, decreased membrane fluidity was associated with increased fatty acid production ability. Maintenance of high membrane integrity or longer membrane lipids seemed to be of less importance than fluidity. Cell surface hydrophobicity was also directly associated with fatty acid production titers, with the strength of this association demonstrated by plasmid-based expression of the multiple stress resistance outer membrane protein BhsA. This expression of bhsA was effective in altering hydrophobicity, but the direction and magnitude of the change differed between strains. Thus, additional strategies are needed to reliably engineer cell surface hydrophobicity. This work demonstrates the ability of environmental microbiological studies to impact the metabolic engineering design-build-test-learn cycle and possibly increase the economic viability of fermentative bioprocesses. IMPORTANCE The production of bulk fuels and chemicals in a bio-based fermentation process requires high product titers. This is often difficult to achieve, because many of the target molecules damage the membrane of the microbial cell factory. Engineering the composition of the membrane in order to decrease its vulnerability to this damage has proven to be an effective strategy for improving bioproduction, but additional strategies and engineering targets are needed. Here, we studied a small set of environmental Escherichia coli isolates that have higher production titers of octanoic acid, a model biorenewable chemical, than those of the lab strain MG1655. We found that membrane fluidity and cell surface hydrophobicity are strongly associated with improved octanoic acid production. Fewer genetic modification strategies have been demonstrated for tuning hydrophobicity relative to fluidity, leading to the conclusion that there is a need for expanding hydrophobicity engineering strategies in E. coli .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app