Add like
Add dislike
Add to saved papers

Ginsenoside Rg1 protects against acetaminophen-induced liver injury via activating Nrf2 signaling pathway in vivo and in vitro.

Acetaminophen (APAP) is a worldwide used drug for treating fever and pain. However, APAP overdose is the leading cause of drug-induced liver injury. The purpose of the current study is to evaluate the hepatoprotective effect of ginsenoside Rg1 (Rg1), the main pharmacologically active compounds of Panax ginseng, against APAP-induced acute liver injury, and further to elucidate the involvement of Nrf2 signaling pathway by in vivo and in vitro experiments. Male C57BL/6 mice were treated with Rg1 for 3 days before injection of APAP. Serum and liver tissue samples were collected 6 h later. The results indicated that Rg1 significantly attenuated APAP-induced hepatotoxicity and oxidative stress in a dose-dependent manner. Rg1 effectively enhanced antioxidant and detoxification capacity, which is largely dependent on up-regulating Nrf2 nuclear translocation, reducing Keap1 protein expression and up-regulating Nrf2 target genes including GCLC, GCLM, HO-1, NQO1, Ugt1a1, Ugt1a6, Ugt2b1, Sult2a1, Mrp2, Mrp3 and Mrp4. Furthermore, Rg1 repressed the activities of Cyp2e1, Cyp3a11, Cyp1a2, which are important enzymes in the formation of APAP toxic metabolite N-acetyl-p-benzoquinone imine. However, the changes in transporters and enzymes, as well as ameliorative liver histology induced by Rg1 were abrogated by Nrf2 antagonist all-transretinoic acid in vivo and Nrf2 siRNA in vitro. In conclusion, Rg1 produced hepatoprotective effects against APAP-induced acute liver injury via Nrf2 signaling pathway. Rg1 might be an effective approach for the prevention against acute liver injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app