Add like
Add dislike
Add to saved papers

In vitro screening of cell bioenergetics to assess mitochondrial dysfunction in drug development.

Drug-induced mitochondrial toxicity is considered as a common cellular mechanism that can induce a variety of organ toxicities. In the present manuscript, 17 in vitro mitochondrial toxic drugs, reported to induce Drug-Induced Liver Injury (DILI) and 6 non-mitochondrial toxic drugs (3 with DILI and 3 without DILI concern), were tested in HepG2 cells using a bioenergetics system. The 17 mitochondrial toxic drugs represent a wide variety of mitochondrial dysfunctions as well as DILI and include 4 pairs of drugs which are structurally related but associated with different DILI concerns in human. Cell bioenergetics were measured using the XF96e analyzer which simultaneous monitor oxygen consumption rate (OCR) and extracellular acidification rate (ECAR), indirect measurements of oxidative phosphorylation and glycolysis, respectively. OCR associated with ATP production, maximal respiration, proton leak and spare respiratory capacity, were also assessed. Duplicate experiments resulted in a sensitivity of 82% (14/17) and specificity of 83% (5/6). The addition of stressors improved specificity considerably. Cut-offs, statistics and rules are clearly discussed to facilitate the use of this assay for screening purposes. Overall, the authors consider that this assay should be part of the battery of safety screening assays at early stages of drug development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app