Add like
Add dislike
Add to saved papers

Citrullinated histone 3 causes endothelial barrier dysfunction.

Circulating components of neutrophil extracellular traps (NETs), especially histones, are associated with tissue injury during inflammatory conditions like sepsis. Commonly used as a NET biomarker, citrullinated histone 3 (H3Cit) may also functionally contribute to the NET-associated inflammatory response. To this end, we sought to examine the role of H3Cit in mediating microvascular endothelial barrier dysfunction. Here we show that H3Cit can directly contribute to inflammatory injury by disrupting the microvascular endothelial barrier. We found that endothelial responses to H3Cit are characterized by cell-cell adherens junction opening and cytoskeleton reorganization with increased F-actin stress fibers. Several signaling pathways often implicated in the transduction of hyperpermeability, such as Rho and MLCK, did not appear to play a major role; however, the adenylyl cyclase activator forskolin blocked the endothelial barrier effect of H3Cit. Taken together, the data suggest that H3Cit-induced endothelial barrier dysfunction may hold promise to treat inflammatory injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app