Add like
Add dislike
Add to saved papers

Nano-sized anion-exchangers as a stationary phase in capillary electrochromatography for separation and on-line concentration of carboxylic acids.

Talanta 2018 October 2
Nano-sized anion-exchangers (NSAE) are promising materials in electrophoretic separation methods due to their high ion-exchange capacity, large surface-to-volume ratios, high adhesion to the quartz surface and pH-independent positive charge. In current research we describe a simple approach for NSAE synthesis, which includes two-step grinding of macroanionite followed by centrifugation. The synthesized stable aqueous suspension of NSAE particles was applied as physically adsorbed modifier of fused-silica capillary walls for CEC separation of carboxylic acids. We proposed fast and simple approach to formation of NSAE-based stationary phase on the internal fused-silica surface, which included 15 min rinsing of the capillary with diluted water suspension of NSAE. Formed physically-adsorbed coating turned out to be extremely stable in a wide range of pH (from 2 to 10). NSAE modified capillaries provided high separation efficiency (N = 148-732 *103 t.p./m) and selectivity (Rs = 1.2-5.7) of carboxylic acids. Simultaneous application of NSAE-modified capillaries with various on-line concentration techniques (such as field amplified sample stacking and field amplified sample injection) provided both low detection limits (up to 1-3 ng/mL) and high separation selectivity of carboxylic acids. It was useful for their quantitative determination in wines samples. Physically-adsorbed coatings based on NSAE exhibit higher selectivity and lower detection limits compared to commonly used dynamic modifier of fused-silica capillary walls - cetyltrimethylammonium bromide. NSAE-based coatings do not require equilibrium sustaining to maintain the surface coverage. It makes them appropriate for CE-MS application.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app