COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Comparison of performance between boron-doped diamond and copper electrodes for selective nitrogen gas formation by the electrochemical reduction of nitrate.

Chemosphere 2018 November
The electrochemical nitrate reduction by using boron-doped diamond (BDD) and copper (Cu) electrodes was investigated at various potentials. Product selectivity of nitrate reduction was strongly dependent on the applied potential for both electrodes. The highest selectivity of nitrogen gas production was obtained at -2.0 V (vs. Ag/AgCl) by using a BDD electrode with a faradaic efficiency as high as 45.2%. Compared with Cu electrode, nitrate reduction on BDD electrode occurred at more positive potential, and the production of nitrogen gas was larger. The transformation of surface-adsorbed nitrate into molecular nitrogen would be accelerated on BDD electrode with hindering nitrite production. In addition, low concentration of surface-adsorbed hydrogen on the BDD would also retard the ammonia generation, leading to increase in the selectivity of nitrogen gas formation. Meanwhile, BDD electrode could hinder the hydrogen evolution reaction, which enhanced the efficiency for nitrate reduction and decreased energy consumption. BDD electrode has excellent stability to remain better performance for reducing nitrate during electrolysis without any variation of surface morphology or chemical components.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app