Add like
Add dislike
Add to saved papers

Medical breast ultrasound image segmentation by machine learning.

Ultrasonics 2019 January
Breast cancer is the most commonly diagnosed cancer, which alone accounts for 30% all new cancer diagnoses for women, posing a threat to women's health. Segmentation of breast ultrasound images into functional tissues can aid tumor localization, breast density measurement, and assessment of treatment response, which is important to the clinical diagnosis of breast cancer. However, manually segmenting the ultrasound images, which is skill and experience dependent, would lead to a subjective diagnosis; in addition, it is time-consuming for radiologists to review hundreds of clinical images. Therefore, automatic segmentation of breast ultrasound images into functional tissues has received attention in recent years, amidst the more numerous studies of detection and segmentation of masses. In this paper, we propose to use convolutional neural networks (CNNs) for segmenting breast ultrasound images into four major tissues: skin, fibroglandular tissue, mass, and fatty tissue, on three-dimensional (3D) breast ultrasound images. Quantitative metrics for evaluation of segmentation results including Accuracy, Precision, Recall, and F1measure , all reached over 80%, which indicates that the method proposed has the capacity to distinguish functional tissues in breast ultrasound images. Another metric called the Jaccard similarity index (JSI) yields an 85.1% value, outperforming our previous study using the watershed algorithm with 74.54% JSI value. Thus, our proposed method might have the potential to provide the segmentations necessary to assist the clinical diagnosis of breast cancer and improve imaging in other modes in medical ultrasound.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app