Add like
Add dislike
Add to saved papers

Evaluation of lipid peroxidation and the level of some elements in rat erythrocytes during separate and combined vanadium and magnesium administration.

The impact of vanadium (V) and magnesium (Mg) as sodium metavanadate (SMV, 0.125 mg V/ml) and magnesium sulfate (MS, 0.06 mg Mg/ml) on lipid peroxidation (LPO) and selected elements in the rat erythrocytes (RBCs) was investigated. Relationships between some indices determined in RBC were also studied. SMV alone (Group II) elevated the malondialdehyde level (MDARBC ) (by 95% and 60%), compared with the control (Group I) and MS-supplemented rats (Group III), respectively, reduced the concentration of CuRBC (by 23.5%), in comparison with Group I, but did not change the levels of NaRBC , KRBC , and CaRBC , whereas MS alone (Group III) only reduced the CuRBC concentration (by 22%), compared with Group I. The SMV + MS combination (Group IV) reduced and elevated the CuRBC (by 24%) and CaRBC (by 111%) concentrations, respectively, in comparison with Groups I and III, and these changes were induced by the V-Mg antagonistic and synergistic interaction, respectively. The combined SMV + MS effect also enhanced the MDARBC level, compared with Groups I (by 79%) and III (by 47%) and slightly limited its concentration, compared with Group II, which, in turn, resulted from the distinct trend toward the V-Mg antagonistic interaction. We can conclude that V (as SMV) is able to stimulate LPO in rat RBCs and that V-Mg interactive effects are involved in changes in CuRBC , CaRBC , and MDARBC . Further studies are needed to elucidate the exact mechanisms of the V-Mg antagonistic/synergistic interactions and to provide insight into the biochemical mechanisms of changes in rats suffering from anemia [1], characterized by a disrupted antioxidant barrier in RBCs [2] and an intensified free radical process in these cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app