Add like
Add dislike
Add to saved papers

Mild acids facilitate functional dentin remineralization under thermo-mechanical stimuli.

PURPOSE: To evaluate if mechanical and thermal cycling promote remineralization at the resin-dentin interface after bonding with three different adhesive approaches.

METHODS: Dentin surfaces were subjected to three different treatments: demineralization (1) by 37% phosphoric acid followed by application of an etch-and-rinse dentin adhesive Single Bond (Adper Single Bond) (SB); (2) by 0.5 M ethylenediaminetetraacetic acid (EDTA) followed by SB; (3) application of a self-etch dentin adhesive: Clearfil-SEB (Clearfil SE Bond). Bonded interfaces were stored during 24 hours and then submitted for 3 months to: (1) storage at 37ºC, (2) load cycling, (3) thermocycling, and (4) thermo+load cycling. One section was extracted from each tooth, monthly. Resin-dentin interfaces were analyzed by AFM nano-indentation, Raman spectroscopy/cluster analysis and Masson's trichrome staining at 24 hours, 1, 2 and 3 months, to determine remineralization at the interface.

RESULTS: Thermo+load cycling promoted the highest biomimetic remineralization at the hybrid layer formed with EDTA+SB and Clearfil-SEB, at the 1 month time point. A narrow mineral-depleted zone was observed after thermo+load cycling with EDTA+ SB, and at those specimens bonded with Clearfil-SEB. Thermo+load cycling remineralized the dentin interface treated with EDTA+SB and Clearfil-SEB, after 1 month of study period, providing bioactivity and maturity of formed minerals.

CLINICAL SIGNIFICANCE: In vitro challenging (thermo+load cycling) favors dentin remineralization at the resin-dentin bonded interfaces promoted with mild conditioning acids.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app