Add like
Add dislike
Add to saved papers

Optimization of the trade-off between speckle reduction and axial resolution in frequency compounding.

We measured the reduction of speckle by frequency compounding using Gaussian pulses, which have the least timebandwidth product. The experimental results obtained from a tissue mimicking phantom agree quantitatively with numerical simulations of randomly distributed point scatterers. For a fixed axial resolution, the amount of speckle reduction is found to approach a maximum as the number of bands increases while the total spectral range that they cover is kept constant. An analytical solution of the maximal speckle reduction is derived and shows that the maximal speckle reduction improves approximately as the square root of the inverse of the Gaussian pulse bandwidth. Since the axial resolution is proportional to the inverse of the pulse bandwidth, an optimized trade-off between speckle reduction and axial resolution is obtained. Considerations for the applications of the optimized trade-off are discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app