JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Anomalous Fraunhofer Patterns in Gated Josephson Junctions Based on the Bulk-Insulating Topological Insulator BiSbTeSe 2 .

Nano Letters 2018 August 9
One-dimensional Majorana modes are predicated to form in Josephson junctions based on three-dimensional topological insulators (TIs). While observations of supercurrents in Josephson junctions made on bulk-insulating TI samples have been reported recently, the Fraunhofer patters observed in such TI-based Josephson junctions, which sometimes present anomalous features, are still not well-understood. Here, we report our study of highly gate-tunable TI-based Josephson junctions made of one of the most bulk-insulating TI materials, BiSbTeSe2 , and Al. The Fermi level can be tuned by gating across the Dirac point, and the high transparency of the Al-BiSbTeSe2 interface is evinced by a high characteristic voltage and multiple Andreev reflections, with peak indices reaching 12. Anomalous Fraunhofer patterns with missing lobes were observed in the entire range of gate voltage. We found that, by employing an advanced fitting procedure to use the maximum entropy method in a Monte Carlo algorithm, the anomalous Fraunhofer patterns are explained as a result of inhomogeneous supercurrent distributions on the TI surface in the junction. Besides establishing a highly promising fabrication technology, this work clarifies one of the important open issues regarding TI-based Josephson junctions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app