Add like
Add dislike
Add to saved papers

Respiratory syncytial virus prevents the subsequent development of ovalbumin-induced allergic responses by inhibiting ILC2 via the IL-33/ST2 pathway.

Immunotherapy 2018 September
AIM: How respiratory syncytial virus (RSV) influences the development of ovalbumin (OVA)-induced asthma remains elusive. As potent T helper (Th)2 cytokine producers, group 2 innate lymphoid cells (ILC2s) are known to serve important functions in the pathogenesis of allergic inflammation. However, how RSV infection affects innate immunity, especially with regard to the function of ILC2s in OVA-induced allergic airway inflammation, is largely unknown.

MATERIALS & METHODS: RSV was used to infect adult BALB/c mice intranasally prior to sensitization and subsequent challenge with OVA. ILC2 frequencies and Th2 cytokine production by ILC2s were assessed by flow cytometry. Cytokine levels were detected both by real-time PCR and ELISA.

RESULTS: Previous infection with RSV attenuated airway inflammation and decreased Th2 cytokine production in mice sensitized and challenged with OVA. Furthermore, previous infection with RSV inhibited the influx of ILC2s into the lung, and constrained their Th2 cytokine production. Adoptive transfer of ILC2s increased asthma-associated airway inflammation in mice previously infected with RSV. These results indicate that previous infection with RSV prevents OVA-induced asthma development via inhibition of ILC2s. Previous infection with RSV attenuated IL-33 production in lung tissue and reduced relative ST2L expression in lung ILC2s, meaning that previous infection with RSV may alter ILC2 function via the IL-33/ST2 signaling pathway.

CONCLUSION: These results demonstrate that previous infection with RSV attenuates OVA-induced airway inflammation by inhibiting the recruitment and Th2 cytokine production of ILC2s via the IL-33/ST2 pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app