Add like
Add dislike
Add to saved papers

An optimized band-target entropy minimization for mass spectral reconstruction of severely co-eluting and trace-level components.

Gas chromatography-mass spectrometry (GC-MS) is a versatile analytical method but its data is usually complicated by the presence of severely co-eluting and trace-level components. In this work, we introduce an optimized band-target entropy minimization approach for the analysis of complex mass spectral data. This new approach enables an automated mass spectral analysis which does not require any user-dependent inputs. Moreover, the approach provides improved sensitivity and accuracy for mass spectral reconstruction of severely co-eluting and trace-level components. The accuracy of our approach is compared to the automatic mass spectral deconvolution and identification system (AMDIS) with two controlled mixtures and a sample of Eucalyptus essential oil. Our approach was able to putatively identify 130 compounds in Eucalyptus essential oil, which was 46% in excess of that identified by AMDIS. This new approach is expected to benefit GC-MS analysis of complex mixtures such as biological samples and essential oils, in which the data are often complicated by co-eluting and trace-level components. Graphical abstract ᅟ.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app