Add like
Add dislike
Add to saved papers

11% Organic Photovoltaic Devices Based on PTB7-Th: PC 71 BM Photoactive Layers and Irradiation-Assisted ZnO Electron Transport Layers.

The enhancement of interfacial charge collection efficiency using buffer layers is a cost-effective way to improve the performance of organic photovoltaic devices (OPVs) because they are often universally applicable regardless of the active materials. However, the availability of high-performance buffer materials, which are solution-processable at low temperature, are limited and they often require burdensome additional surface modifications. Herein, high-performance ZnO based electron transporting layers (ETLs) for OPVs are developed with a novel g -ray-assisted solution process. Through careful formulation of the ZnO precursor and g -ray irradiation, the pre-formation of ZnO nanoparticles occurs in the precursor solutions, which enables the preparation of high quality ZnO films. The g -ray assisted ZnO (ZnO-G) films possess a remarkably low defect density compared to the conventionally prepared ZnO films. The low-defect ZnO-G films can improve charge extraction efficiency of ETL without any additional treatment. The power conversion efficiency (PCE) of the device using the ZnO-G ETLs is 11.09% with an open-circuit voltage ( V OC ), short-circuit current density (  J SC ), and fill factor (FF) of 0.80 V, 19.54 mA cm-2 , and 0.71, respectively, which is one of the best values among widely studied poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b']dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl)]: [6,6]-phenyl-C71 -butyric acid methyl ester (PTB7-Th:PC71 BM)-based devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app