Add like
Add dislike
Add to saved papers

Evaluation of Methods of Displaying the Real-Time Scattered Radiation Distribution during Fluoroscopically-Guided Interventions for Staff Dose Reduction.

Proceedings of SPIE 2018 Februrary
2D and 3D scatter dose display options are evaluated for usefulness and ease of interpretation for real-time feedback to staff to facilitate changes in individual positioning for dose reduction purposes, as well as improving staff consciousness of radiation presence. Room-sized scatter dose 3D matrices are obtained utilizing Monte Carlo simulations in EGSnrc. These distributions are superimposed on either a ceiling-view 2D graphic of the patient and table for reference or a 3D augmented reality (AR) display featuring a real-time video feed of the interventional room. A slice of the scatter dose matrix, at a selectable distance above the floor, is color-coded and superimposed on the computer graphic or AR display. The 3D display obtains depth information from a ceiling mounted Microsoft Kinect camera, which is equipped with a 1080p visual camera, as well as an IR emitter/receiver to generate a depth map of the interventional suite and persons within it. The 3D depth information allows parts of objects above the 2D dose map to pass through the map without being colorized by it so the height perspective of the dose map can be maintained. The 2D and 3D displays incorporate network information from the imaging system to scale the scatter dose with exposure factors and adjust rotation of the distribution to match the gantry. Demonstration images were displayed to neurosurgery interventional staff and survey responses were collected. Results from the survey indicated that scatter distribution displays would be desirable and helpful in managing staff dose.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app