Add like
Add dislike
Add to saved papers

Association of ibuprofen at the polar/apolar interface of lipid membranes.

Ibuprofen is a non-steroidal anti-inflammatory drug widely used to treat inflammatory diseases, and for its analgesic and antipyretic activity. Although operating as a protein inhibitor, it is also known to interact with lipid membranes. We combined calorimetry, electron spin resonance, attenuated total reflectance-Fourier transform infrared and molecular docking to characterize the interaction of ibuprofen with dimyristyolphosphatidylcholine (DMPC) bilayers, as a function of temperature and drug concentration. At increasing concentration, ibuprofen first perturbs and then suppresses the DMPC pre-transition, stabilizes the fluid state, and favours gel-fluid phase coexistence. The drug decreases the molecular packing of the polar heads and of the first methylene segments of lipid membranes in the gel phase, whereas it leaves unperturbed the chain flexibility in the liquid-crystalline phase. The action of ibuprofen also leads to a higher degree of hydration of the bilayer polar heads and favours hydrogen bond formation with solvent molecules. The overall results reveal that ibuprofen affects a number of key molecular properties of DMPC bilayers by binding through non-specific interactions at the polar/apolar interface.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app