Add like
Add dislike
Add to saved papers

Biomechanical evaluation of Chinese customized three-dimensionally printed total temporomandibular joint prostheses: A finite element analysis.

PURPOSE: This work aims to evaluate the biomechanical behavior of Chinese customized three-dimensional (3D)-printing total temporomandibular joint (TMJ) prostheses by means of finite element analysis.

METHODS: A 3D model was established by Mimics 18.0, then output in a stereolithography (STL) format. Two models were established to investigate the strain behaviors of an intact mandible and a one-side implanted mandible respectively. Hypermesh and LS-DYNA software were used to establish computer-aided engineering finite element models. The stress distribution on the custom-made total TMJ prosthesis and the strain distribution on the mandible were analyzed by loading maximal masticatory force.

RESULTS: The maximum stress on the surface of the ultra-high-molecular weight polyethylene was 19.61 MPa. With respect to the mandibular component, the maximum stress in the mandibular component was located at the anterior and posterior surface of the condylar neck, reaching 170.01 MPa. The peak von Mises stress was observed on the topside screw of the mandible, which was found to be 236.08 MPa. For the intact model, it was observed that the strain distribution was basically symmetrical. For the model with the prosthesis, the curve of strain distribution was fundamentally consistent with that in the intact mandible, except for the last 24 mm along the control line. A prominent strain decrease between 41.4% and 58.3% was observed in this area.

CONCLUSIONS: Chinese customized 3D-printed total TMJ prostheses exhibit uniform stress distribution without changing the behavior of the opposite side natural joint. Furthermore, the prostheses have a great potential to be improved in design and materials with a promising future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app